A NOVEL TYPE OF BRIDGING OF THE β -DIKETONATE DIANIONS BETWEEN TWO PALLADIUM(II) ATOMS: η^3 -COORDINATION AND 0.0'-CHELATION Yukie OTANI, Yukio NAKAMURA, Shinichi KAWAGUCHI, Seichi OKEYA, * and Tetsu HINOMOTO ** Faculty of Science, Osaka City University, Sumiyoshi-ku, Osaka 558 *Faculty of Education, Wakayama University, Masago-cho, Wakayama 640 **Japan Electron Optics Laboratories, Ltd., Akishima, Tokyo 196 Complexes of a novel type, $[(PP)Pd(O,O'-\beta-dik(2-)-C^1-C^3)Pd(PP)]-(ClO_4)_2$ containing diamions of acetylacetone and ethyl acetoacetate as a bridging ligand and diphosphines (PP) were prepared and characterized mainly by IR and 1H , ^{13}C , and ^{31}P NMR spectroscopy. Dianions of β -dicarbonyl compounds are very useful for organic syntheses, 1) but their transition metal complexes are scanty. 2) Some palladium(II) complexes containing dianions of acetylacetone and ethyl acetoacetate as a trihapto ligand were reported in a previous paper, 3) where a novel type of compound [(bpy)Pd(0,0'-acac(2-)-C^1-C^3)Pd(bpy)](hfac)₂ was mentioned briefly. The present communication is concerned with this kind of dinuclear palladium(II) complexes of bridging β -dicarbonyl dianions containing phosphine ligands in place of 2,2'-bipyridine (bpy) to increase solubility in organic solvents. Preparation. The nitrogen base in $[Pd(\beta-dik(2-)-C^1-C^3) (bpy)]$ was readily substituted by tertiary phosphines in dichloromethane at room temperature to afford the $[Pd(\beta-dik(2-)-C^1-C^3) (PP)]$ complexes (A) in 87-94% yields. Here $\beta-dik(2-)$ represents a diamion of acetylacetone (acac(2-)) or ethyl acetoacetate (etac(2-)) and PP a bidentate phosphine such as 1,2-bis(diphenylphosphino)ethane (dppe) and cis-1,2-bis(diphenylphosphino)ethylene (dpe) or two molecules of triphenylphosphine. Dichloro (diphosphine) palladium (II) was prepared according to the literature method, 4) and the chloride ligands were displaced by the reaction with silver (I) perchlorate in acetone. Diphosphinepalladium (II) perchlorate was then treated with complexes A in methanol at 0°C to obtain yellow precipitates of [(PP)Pd(β -dik(2-))- Pd(PP)](ClO₄)₂ (B) in 55-83% yields. Complexes A (1-5) and B (6-10) gave satisfactory analyses and molecular-weight data in conformity with the following structures. The ν (C=0) bands observed for complexes A in the 1630-1660 cm⁻¹ region are lost in the IR spectra of compounds B and only bands in the 1540-1590 cm⁻¹ region are observed, indicating coordination of the carbonyl oxygens in B. $$\begin{bmatrix} P^{1} & H^{c} \\ H^{c} & D \\ P^{1} & H^{c} P^{2} H^{c}$$ NMR Spectra. 1 H NMR spectra for these complexes are not conclusive for the structure assignment, since the signals ascribable to $^{\rm H}{}^{\rm b}$ and $^{\rm H}{}^{\rm c}$ overlap with each other and with other signals. However, the signal from $^{\rm H}{}^{\rm a}$ is useful. Thus, $^{\rm H}{}^{\rm a}$ of compound $^{\rm C}{}^{\rm c}$ resonates at 4.28 ppm from internal $^{\rm M}{}^{\rm c}$ in CDCl $^{\rm C}{}^{\rm a}$ as a doublet of doublets due to coupling to $^{\rm P}{}^{\rm l}$ (J = 8 Hz) in the trans position and to $^{\rm H}{}^{\rm c}$ (J = 2 Hz) according to the "W rule." $^{\rm S}{}^{\rm l}$) On the other hand, the signal from $^{\rm H}{}^{\rm a}$ of compound $^{\rm T}{}^{\rm l}$ appears as a doublet at 4.78 ppm with $^{\rm L}{}^{\rm l}{}^{\rm l}$ = 9 Hz. The downfield shift seems to be caused by coordination to the second palladium atom via the oxygen atoms and loss of coupling to $^{\rm H}{}^{\rm c}$ by violence of the W rule due to transposition from syn in $^{\rm L}{}^{\rm c}$ to anti in 7. ^{31}P and ^{13}C NMR spectra are very helpful. The $^{31}\text{P}\{^1\text{H}\}$ spectrum of compound $\underline{1}$ in CDCl $_3$ shows two signals at 52.7 $_9$ and 60.2 $_2$ ppm downfield from external H_3PO_4 both as doublets with J(P-P) = 11 Hz, reflecting unsymmetric coordination of the acac(2-) anion to Pd(II), although individual assignment of the signals to P^1 and P^2 is not possible at the present stage of investigation. As is seen in Fig. 1, compound $\underline{6}$ shows two broader signals at 66.1 $_7$ and 68.2 $_0$ ppm besides two doublets at 60.8 $_5$ and 66.6 $_4$ ppm with J(P-P) = 18 Hz in (CD $_3$) $_2$ CO at 27°C. The latter doublets are assigned to P^1 and P^2 by reference to the spectrum of $\underline{1}$. The former signals, which are probably assigned to P^3 and P^4 , become broader with increasing temperature and coalesce at about 50°C, indicating occurrence of the coordination site exchange of the chelating oxygen atoms. Fig. 1. $^{31}P\{^{1}H\}$ NMR spectrum of [(dpe)Pd(acac(2-))Pd(dpe)](ClO₄)₂ ($\underline{6}$) in (CD₃)₂CO at 27°C. Table 1. 13 C NMR chemical shifts δ (ppm from internal Me $_4$ Si) and coupling constants J (Hz) in CDCl $_3$ (for $\underline{1}$ and $\underline{2}$) and (CD $_3$) $_2$ CO (for $\underline{6}$ and $\underline{7}$) | | δ | J(P ¹ -C) | J(P ² -C) | J(C-H) | δ | J(P ¹ -C) | J(P ² -C) | J (C-H) | |----------------|---|----------------------|----------------------|--------|---|----------------------|----------------------|---------| | | [Pd (acac (2-)- C^1 - C^3) (dpe)] ($\underline{1}$) | | | | [Pd(etac(2-)- C^1 - C^3)(dpe)](<u>2</u>) | | | | | c^1 | 48.4d | ~0 | 52. ₇ | 149 | 48.3d | ~0 | 52.0 | 150 | | c^2 | 177.0t | 5.5 | 5.5 | | 176.4dd | 5.5 and 6.2 | | | | c^3 | 75.9d | 40 | ~0 | 145 | 62.5dd | 46.5 | 1.8 | 152 | | C4 | 203.7dd | ~5 | ~2 | | 171.1dd | 5.9 | 1.2 | | | | [(dpe)Pd(acac(2-))Pd(dpe)](ClO ₄) ₂ (<u>6</u>) | | | | [(dpe)Pd(etac(2-))Pd(dpe)](ClO ₄) ₂ (<u>7</u>) | | | | | c^1 | 53.4d,br | ~0 | 43 | 153 | 53.5d,br | ~0 | 43 | 154 | | c^2 | 166.7t | 6 | 6 | | 170.1t | 6 | 6 | | | c ³ | 76.9d | 28 | ~0 | 158 | 63.7d | 33 | 0 | 157 | | C4 | 208.4s | ~0 | ~0 | | 180.5s,br | ~0 | ~0 | | Table 1 lists the ^{13}C NMR data for the $^{12}\text{-C}^4$ carbons of compounds $\underline{1}$ and $\underline{2}$ in CDCl $_3$ and of $\underline{6}$ and $\underline{7}$ in (CD $_3$) $_2$ CO. The dpe complexes are more stable than the corresponding dppe and PPh $_3$ complexes, exhibiting very good ^{13}C NMR spectra. The $^{12}\text{C}^{13}$ and $^{13}\text{C}^{23}$ Sarbons of $\underline{1}$ and $\underline{2}$ resonate at about 10 ppm downfield compared with those of [Pd(acac(2-)-c^1-c^3)(bpy)] and [Pd(etac(2-)-c^1-c^3)(Me_2bpy)], 3) indicating larger back donation of palladium to the phosphine than to bipyridines. The $^{12}\text{C}^{13}$ and $^{12}\text{C}^{13}$ nuclei couple much more strongly to the phosphorus atoms situated at the trans position than to those at cis. It is worth noting that $^{12}\text{C}^{13}$ in $^{12}\text{C}^{13}$ are quite similar to those of $^{12}\text{C}^{13}$ and $^{12}\text{C}^{13}$ approving that the $^{12}\text{C}^{13}$ constants. The spectra of $^{12}\text{C}^{13}$ are quite similar to those of $^{12}\text{C}^{13}$ and $^{12}\text{C}^{13}$ approving that the $^{13}\text{C}^{13}$ can define the phosphorus atoms situated at the trihapto bonding to palladium. Signals from $^{12}\text{C}^{13}$, and $^{12}\text{C}^{13}$ are shifted downfield more or less on chelation to another metal atom. Only $^{12}\text{C}^{23}$ shows substantial upfield shift. It might be caused by the change in the bonding mode around $^{12}\text{C}^{23}$ from $^{12}\text{C}^{13}$ complexes are now in progress. ## References - 1) T. M. Harris and C. M. Harris, Organic Reactions, 17, 155 (1969); T.-H. Chan and P. Brownbridge, J. Chem. Soc. Chem. Comm., 1979, 578. - S. Okeya, N. Yanase, Y. Nakamura, and S. Kawaguchi, Chem. Lett., <u>1978</u>, 699; N. Yanase, Y. Nakamura, and S. Kawaguchi, Inorg. Chem., <u>17</u>, 2874 (1978). - 3) N. Yanase, Y. Nakamura, and S. Kawaguchi, Inorg. Chem., 19, 1575 (1980). - 4) J. A. Davies, F. R. Hartley, S. G. Murray, J. Chem. Soc. Dalton Trans., <u>1979</u>, 1705. - 5) L. M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry," 2nd ed., Pergamon, London (1969), p.334. (Received October 22, 1980)